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SUMMARY

The pitch, yaw, and roll damping as well as the oscillatory stability in
pitch and in yaw were measured for two canard-wing configurations with wing
sweeps of 44© and 60°, Other parameters measured during the test were the
normal force due to pitch rate and the cross derivatives, yawing moment due
to roll rate, and rolling moment due to yaw rate. The tests were made at free-
stream Mach numbers of 0.3, 0.4, and 0.7 and for angles of attack from about
-40 to 20°. The effects of various components such as the canard, nose
strakes, wings, vertical tail, and horizontal tail were determined. The basic
canard-wing vertical-tail configurations generally had positive damping in
pitch, yaw, and roll. The effect of the canard was usually beneficial except
for a tendency to decrease the oscillatory directional stability. Theoretical
estimates were made using a vortex-lattice computer program; they were then
compared with the experimental results.

INTRODUCTION

Airplanes with canard surfaces have been studied and flown since the
beginning of powered flight. Over the years, however, the use of a horizontal
stabilizer to the rear of the main lifting surface has become dominant world-
wide for airplanes of all types. More recently, the advantages of canards on
maneuvering fighter airplanes have been reexamined in detail as part of a study
by the National Aeronautics and Space Administration. References 1, 2, and 3
form a part of this study and show that it is possible for a canard-wing con-
figuration to have increased trimmed lift, reduced trim drag, and reduced wave
drag. The present study was conducted to determine the pitch, yaw, and roll
damping at subsonic speeds of two close-coupled canard-wing configurations of
fighter~type airplanes. The tests were made at free-stream Mach numbers from
0.3 to 0.7 and at angles of attack from approximately -4° to 200,

SYMBOLS
The aerodynamic parameters in this report are referred to the body system
of axes as shown in figure 1 in which the coefficients, angles, and angular
velocities are shown in the positive sense. These axes originate at the moment
reference center which was located according to the model drawings in figure 2.
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mean geometric chord, 24,56 centimeters
frequency of oscillation, hertz

reduced frequency parameter, wE/ZV in
yaw, radians

free-stream Mach number

angular velocity of model about X-axis,
angular velocity of model about ¥Y-axis,
free-stream dynamic pressure, pascals
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free-stream velocity, meters per second
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in roll and

Dot over quantity indicates first derivative with respect to time.

Model component designations:
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body
canard

horizontal tail
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v vertical tail
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MODEL AND TEST APPARATUS

Three-view drawings of the model with both the 44° and 60° swept wing con-
figurations are shown in figure 2. The horizontal tail and the strakes on the
fuselage forebody were tested with the 44© sweep wing only. The canard, hori-
zontal tail, and vertical tail surfaces had a leading-edge sweep of 51.70° and
each of the exposed panels had the same dimensions. Detailed geometric charac-
teristics of the model are listed in table I. The characteristics of all the
aerodynamic surfaces are based on the planform formed by extending the leading
and trailing edges to the model center line.

A photograph of the 60° swept wing configuration mounted on the sting for
the forced-oscillation dynamic stability tests in the Langley high-speed 7~ by
10-foot tunnel is shown in two views in figure 3. A description and the oper-
ating characteristics of this wind tunnel can be found in reference 4. Photo-
graphs of the small-amplitude forced-oscillation dynamic stability balances are
in figure 4. Reference 5 contains a detailed description of the dynamic sta-
bility balances and the associated data reduction equations.

TESTS

The dynamic stability parameters were measured primarily at Mach numbers
of 0.4 and 0.7 for all configurations. In addition, the damping-in-roll and
the associated parameters were measured at a Mach number of 0.3 for the 44°
swept wing configuration in order to obtain data over the available angle-of-
attack range. The parameters were measured at this Mach number because an
extraneous model-sting vibration had limited the BVW configuration in angle of
attack at the higher Mach numbers. The range of angle of attack available with
the dynamic stability sting was from about -4° to 20°, The nominal values of
the wind-tunnel test conditions are listed in table II while the amplitude of
the forced oscillation and the range of reduced frequency parameters for the
various axes of oscillation are listed in table III.

To insure a turbulent boundary layer over the models, carborundum grains
were applied as three-dimensional roughness to the model nose and along the
leading edges of the canard, wing, and tail surfaces. The size and location
of the grit were chosen based on the work in reference 6. The transition
strips consisted of No. 120 carborundum grit applied in bands 0.16 cm wide.
These bands were located 2.54 cm aft of the model nose and 1.27 cm streamwise
aft of the leading edges of the canard, wing, and tail surfaces.



RESULTS AND DISCUSSION

The results for the component breakdown of the 44° swept wing configura-
tion are shown in figure 5 for damping in pitch and oscillatory longitudinal
stability, The BVWC configuration is seen to have positive damping in pitch
(negative values of Cmq + cmd) and positive oscillatory longitudinal stability

(negative values of me - szmq) for Mach numbers of 0.4 and 0.7, The model

moment center location was chosen prior to the test to give positive longitudi-
nal stability by using the vortex-lattice computer program discussed in a sub-
sequent section of this paper. The destabilizing influence of the canard is
evident in figure 5 except for angles of attack above 16° at a Mach number of
0.4, The effect of the addition of a low aft-mounted horizontal tail to the
canard-wing configuration (BVWC) is seen in figure 6 and shows the expected
increase in positive damping and in stability, Nose strakes (see fig, 2(a))
were added to the 44© swept wing configuration in an effort to maintain the
directional stability to higher &ngles of attack. The strakes were modeled
after one version of those tested in reference 7. For the BVWC configuration
of figure 7 and the BV configuration of figure 8, the addition of the nose
strakes is seen to increase the damping in pitch and to decrease the oscilla-
tory longitudinal stability at the higher angles of attack, The 60° swept wing
configuration BVWC in figure 9 has positive stability and has positive damping
in pitch except for almost zero damping at M = 0,4 and 18° angle of attack.

The normal force due to pitch rate and the normal force due to pitch dis-
placement parameters are plotted in figure 10 for the 44° swept wing configura-
tion. The BVWC configuration has either positive or negative values of the
normal force due to pitch rate parameter depending on Mach number and angle
of attack., The effects of the addition of the horizontal tail and the nose
strakes on the normal force parameters are shown in figures 11, 12, and 13,

The results for the component breakdown of the 60° swept wing configuration

are shown in figure 14. Like the 44© swept wing BVWC configuration, at a Mach
number of 0.4 the normal force due to pitch rate results for the 60° swept wing
BVWC configuration are positive, but both positive and negative values are
found at M = 0.7,

The results for the component breakdown of the 44° swept wing configura-
tion are presented in figure 15 for damping in yaw and oscillatory directional
stability. The BVWC configuration has positive damping in yaw over the angle-
of-attack range but the oscillatory stability changes sign and the configura-
tion becomes unstable at angles of attack between 14°© and 17°, The canard
tends to destabilize the configuration, The use of the nose strakes with the
canard on (fig. 16) showed a small decrease in oscillatory directional stabil-
ity at a Mach number of 0.4 and only resulted in a small increase in direc-
tional stability for angles of attack above 16° at a Mach number of 0.7, At a
Mach number of 0.7, there was no increase in angle of attack where the model
retained positive oscillatory directional stability as a result of adding the
nose strakes, Figure 17 shows the limited and sometimes adverse effect of add-
ing the nose strakes to the BVW configuration, The 60° swept wing BVWC config-
uration in figure 18 had positive yaw damping and satisfactory values of the
oscillatory directional stability up to angles of attack of 179 to 19° where



this parameter changed signs. Adding the canard resulted in a less direction-
ally stable BVWC configuration for the 60° swept wing just as it did for the
440 gwept wing.

The results for the component breakdown of the various configurations are
presented in figures 19 to 22 for the rolling moment due to yaw rate and the
effective dihedral parameter. Generally, at the positive angles of attack the
winged configurations had positive values of the rolling moment due to yaw rate
and negative values of the effective dihedral parameter.

The component breakdown of the 44© swept wing configuration for the roll
oscillation tests in figure 23 was made at a Mach number of 0.3 because of an
extraneous model-sting vibration which precluded testing over the full angle-
of-attack range for the BVW configuration at the higher Mach numbers. Both the
BVW and the BVWC configurations maintained a high level of roll damping over
the complete angle-of-attack range. 1In figure 23 the roll damping contribution
of the canard and its favorable interference with the 449 swept wing (the dif-
ference between the BVWC and the BVW configurations) generally increased with
angle of attack. On the other hand, the canard and body alone (configuration
BC) has almost a constant level of roll damping up to an angle of attack of
about 16©. There is a large negative peak in the damping-in-roll parameter
evident at an angle of attack of about 18° for the BVWC configuration in fig-
ures 23 and 24. As expected, the nose strakes in figure 25 influenced the roll
damping only slightly. In figure 26 the canards did not affect the damping in
roll of the 60° swept wing configuration as much as the 44° swept wing configu-
ration except at isolated angles of attack.

Results for the yawing moment due to roll rate parameter and the yawing
moment due to roll displacement parameter for the various configurations are in
figures 27 to 30. Removing the canard surfaces from the complete BVWC configu-
ration resulted in a positive increment to the yawing moment due to roll rate.

COMPARISON OF EXPERIMENTAL RESULTS WITH VORTEX-LATTICE ESTIMATES

Theoretical estimates of some of the aerodynamic stability derivatives
were made using the vortex~lattice computer program described in reference 8.
This program has the capability to accommodate multiple lifting surfaces such
as the canard-wing horizontal-tail configuration. The program utilizes a
vortex-lattice representation of a zero-thickness lifting planform, but the
vertical separation of the various lifting surfaces, such as occurs between the
canard and the wing, can be modeled in the program as one of the inputs. The
theoretical estimates do not include any vortex lift contributions. The esti-
mates are based on the assumption of an attached-flow condition and are there-
fore only valid near an angle of attack of 0°., The experimental results for
comparison purposes are for an angle of attack of 09; the multiple experimental
data points for each configuration have been averaged for clarity.

Figure 31(a) compares the experimentally determined pitching-moment param-
eters with the theoretical estimates for the 44C© swept wing configurations.
The significant differences for the damping-in-pitch comparison are considered
to be a result of omitting the ij term from the theoretical estimates.
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Therefore, the estimates have smaller negative values than the experimental
values. The agreement of the oscillatory longitudinal-stability parameters

in the lower part of figure 31(a) is considered good because each of the con-
figurations shows close agreement with the experimental results and the esti-
mates. In addition, the kzcm(.I term in the oscillatory longitudinal-stability

parameter should be insignificant for this aircraft configuration. The normal-
force-parameter comparison is shown in figure 31(b). For the winged configura-
tions, the experimental results for CNq + CNd decrease in magnitude from

M=0.4 to M= 0.7 while the theoretical estimates for CNq alone have a

positive slope with Mach number. The theoretical estimates for the winged con-
figurations for CNQ are seen to be higher, but in reasonable agreement with

the experimental values of the normal force due to pitch displacement. The
damping-in-~roll comparisons for the 44° swept wing configurations are in fig-
ure 31(c). The second term of the experimental damping-in-roll parameter
should be zero because the data are for 0° angle of attack. The theoretical
estimates for the damping in roll do not include the effect of the vertical
tail in the presence of the lifting surfaces because this was not within the
capabilities of the computer program. The experimental damping-in-~roll values
for the winged configurations are higher than the estimated values. Also, for
the configurations with the wings removed, the theoretical estimates are higher
at the single Mach number for which experimental values were measured.

The comparisons of the theoretical estimates with the experimental values
of the stability parameters for the 60° swept wing configurations are contained
in figqure 32. Except for differences in magnitude of the parameters, the same
trends exist in the comparisons for the 44° and the 60° swept wing configura-
tions and the statements made concerning the 44° swept wing configurations are
equally applicable to the 60° swept wing configurations.

SUMMARY OF RESULTS

An investigation has been conducted to determine the dynamic stability
characteristics of two close-coupled canard-wing models at subsonic speeds.
The two wing planforms tested had leading-edge wing sweeps of 440 and 60°.
The basic canard-wing vertical-tail configurations (BVWC) had positive oscil-
latory longitudinal stability and positive damping in pitch except for a loss
in damping at a Mach number of 0.4 and an angle of attack of 18° with the 60°
swept wing. 1In yaw the canard tends to decrease the oscillatory directional
stability of the basic configuration, and the oscillatory directional stability
became unstable at angles of attack between 14° and 19° depending on wing sweep
and Mach number. The use of a particular set of nose strakes did not signifi-
cantly improve this loss in stability. Both the 44° and the 60° swept wings
with the canards on had positive damping in yaw. The addition of the canard
surfaces to the 44° swept wing resulted in an increase in the damping in roll
as the angle of attack was increased. The canard with the 600 swept wing did
not show this higher level of roll damping with increasing angle of attack.



Theoretical estimates made for the various configurations showed reason-
able agreement with the experimental results for the oscillatory longitudinal
stability and the normal force due to pitch displacement. Only fair agreement
was obtained for the damping-in-pitch and damping-in-roll parameters.

Langley Research Center
National Aeronautics and Space Administration

Hampton, VA 23665
August 17, 1978
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TABLE I.- GEOMETRIC CHARACTERISTICS OF MODEL

Body length, em . . . . . . . . . . .

Body width, maximum, cm , ., ., .

Actual leading-edge sweep of nominal 44° swept wing, deg

Actual leading-edge sweep of nominal 60° swept wing, deg

Wi

ngs:
Aspect ratio . . . ., . . . ..
Span, €m . . . ., . . . . v . . .

Mean geometric chord, em ., . .
Area, em? . . . . . .. ... ...

Root chord at fuselage juncture, cm .

Tip chord, em . , ., . . . . . . ..
Airfoil section . .
Maximum thickness, percent chord at
Root at fuselage juncture
Tip . . . . . o . e e e e e

Canard and horizontal tail:

Aspect ratio . . . . , . . . . ..

Span, ¢cm . ., . . . . e e
Leading-edge sweep, deg . ..
Mean geometric chord, em . . . . .
Area, cm?2 e e e . v e e e e e .

Root chord at fuselage juncture, cm .

Tip chord, cm .

Airfoil section .

Maximum thickness, percent chord at
Root at fuselage juncture .

TipP « ¢ ¢ « « o « .« .
Vertical tail:
Aspect ratio . . . . . . . . o .,
Span, CM  + « + « ¢« « « o o o o o
Leading-edge sweep, deg . . .
Mean geometric chord, ecm . . . . .

12

Area, cm? .

Root chord at fuselage juncture, cm .

Tip chord, em . . . . . . . . . . .
Airfoil section . . . o .
Maximum thickness, percent chord at
Root at fuselage juncture
Tip v ¢ ¢ v o o h e e e e e e .,

101.05

11.18

44.03

59.45

2.56
54.36
24.56

1156
29,80

6.77

Circular arc

6
4

2.77
38.06
51.70
16.23
522.6
17.92

3.59

Circular arc

.

6
4

1.39
19.03
51.70
16.23
261.3
17.92

3.59

Circular arc

6
4



TABLE II.- NOMINAL TUNNEL TEST CONDITIONS

Free-stream Dynamic Velocity, Stagnation Reynolds
Mach number, pressure, Vv, m/sec temperature, number,
M dr kPa T, K R
0.3 6.00 102 292 1,62 x 106
.4 10,17 137 301 2,02
o7 25,05 233 303 3.05
L

TABLE III.- OSCILLATION TEST PARAMETERS

Axis Amplitude, Reduced frequency parameter,
deg k, rad

Pitch 1.0 0.0097 to 0,0268

Yaw 1.0 0,0188 to 0,0407

Roll 2,5 0.0341 to 0.,1307
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Figure 1.- Body reference axes with coefficients, angles,
and angular velocities shown in positive sense.
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(a) Configuration with 44° swept wing.

Figure 2.- General arrangement of models. All linear
dimensions are in centimeters.
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(b) Configuration with 60° swept wing.

Figure 2.- Concluded.
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(a) View looking upstream toward model.

Figure 3.- Photographs of 60° swept wing model on forced-oscillation dynamic stability
sting in Langley high~-speed 7- by 10-foot tunnel,
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One-quarter front view of model.

Figure 3.~ Concluded.
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(a) Pitch or yaw balance.

Figure 4.~ Photographs of small-amplitude forced-oscillation dynamic stability balances.
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Figure 4.- Concluded.

(b) Roll balance.

Fixed balance support
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(a) M= 0.4,

Figure 5.- Results for component breakdown of 44° swept wing configuration for
damping-in-pitch parameter and oscillatory longitudinal-stability parameter.

21



Cmq + Cma,

per radian
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Figure 5.- Concluded.
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Figure 6.- Effect of horizontal tail with 44° swept wing configuration on
damping-in-pitch parameter and on oscillatory longitudinal-stability
parameter,
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Figure 6.- Concluded.
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(a) M = 0.4,

Figure 7.- Effect of strake with 44° swept wing configuration on
damping-in-pitch parameter and on oscillatory longitudinal-
stability parameter.
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Figure 7.- Concluded.

"’\c;—-nﬁcmkm/ﬁ

g{
7
it

14

i

16 18 20



CONTFIG.
BVS
BV

0o

20

10

Cmq + Cm&.

per radian P —8- o 00 —b—F—

[0Y)
<‘j

g ——f-—0—B—f - —fH—f——pP—_ QL O

2
Cmg - ¥ Cmgy 0

per radian

-1

-2

6 -4 2 0 2 4 6 8 10 12 14 16 18

Mean angle of attack, a, deg

Figure 8.- Effect of strake with BV configuration on damping-in-pitch
parameter and on oscillatory longitudinal-stability parameter.
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Figure 8.~ Concluded.
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Figure 15.- Results for component breakdown of 44° swept wing configuration for
damping-in-yaw parameter and oscillatory directional-stability parameter.
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Figure 16.- Effect of strake with 44° swept wing configuration on damping-in-yaw
parameter and on oscillatory directional-stability parameter.
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Figure 17.- Effect of strake and canard with 44° swept wing configuration on
damping-in-yaw parameter and on oscillatory directional-stability parameter.
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Figure 18,- Results for component breakdown of 60° swept wing configuration for
damping-in-yaw parameter and oscillatory directional-stability parameter.
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Figure 19.- Results for component breakdown of 44° swept wing configuration for
rolling moment due to yaw rate parameter and effective dihedral parameter.
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Figure 20.- Effect of strake with 44° swept wing configuration on rolling
moment due to yaw rate parameter and on effective dihedral parameter.
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Figure 21,- Effect of strake and canard with 44° swept wing configuration
on rolling moment due to yaw rate parameter and on effective dihedral

parameter,
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Figure 22,- Results for component breakdown of 60° swept wing configuration for
rolling moment due to yaw rate parameter and effective dihedral parameter.

55



CONFIG.

0] BVWC
O BWC
<o BVW
FAN BV
4
8
2
1
Clr - Clﬁ €os a,
per radian 0
-1
2
.1 _KI
Cipcos a + kzcllz, :\
-1
-2 -
-8 L

Angle of attack, a, deg

(b) M= 0.7.

Figure 22,- Concluded.

56




e e

Clp + Cz'-3 sina,
per radian

-14

04

ClB sina- kz(ilp

per radian

0

-.04

-.08

-12 -
-6

CONFIG.
@) BVWC
| BVW
& BVGC
A BC

Vol
'
r
I\
I\l

b

[

6 8 10 12

Angle of attack, a, deg

|
I

/]
7

14

16

18

20

Figure 23,- Results for component breakdown of 44° swept wing confiquration
for damping-in-roll parameter and rolling moment due to roll displacement

parameter,

M= 0.3,

A T

57



-2
Clp + Clﬁ sina,
per radian

-1.4

04

ClBsin a- kZCLﬁ, 0

per radian

-04

-08

-12

CONF¥IG.
O BVWC
a BVW

Angle of attack, «, deg

(a) M=

0.4.
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Figure 27.- Results for component breakdown of 44° swept wing configuration for
yawing  moment due to roll rate parameter and yawing moment due to roll dis-

placement parameter. M = 0.3.
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Figure 30.- Effect of canard and vertical tail with 60° swept wing configuration
on yawing moment due to roll rate parameter and on yawing moment due to roll

displacement parameter.
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Figure 31.~ Comparison of dynamic test results with vortex-lattice theoretical
estimates for 44° swept wing configurations. a = 0°,
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(b) Normal force due to pitch rate and normal force due to pitch displacement.
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Figure 32.- Comparison of dynamic test results with vortex-lattice theoretical
estimates for 60° swept wing configurations. o = 0°,
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(b) Normal force due to pitch rate and normal force due to pitch displacement.

Figure 32.- Continued.
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Dynamic test Configuration Vortex lattice Configuration
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(c) Damping in roll,

Figure 32.- Concluded.
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